1 Recurrence Relations

1.1 Concepts

1. In order to solve a linear homogeneous we can replace the equation with its characteristic polynomial. For instance, the characteristic polynomial of $a_{n}=2 a_{n-1}+a_{n-2}$ is $\lambda^{2}=$ $2 \lambda+1$. Then if $\lambda_{1}, \ldots, \lambda_{k}$ are roots of this polynomial, then the general form of the solution is $a_{n}=C_{1} \lambda_{1}^{n}+\cdots+C_{k} \lambda_{k}^{n}$.

1.2 Problems

2. TRUE False If a_{n}, b_{n} are two solutions to a linear homogeneous equation, then $a_{n}+b_{n}$ is also an solution.

Solution: If our recurrence was $a_{n}=2 a_{n-1}$ for instance, then $\left(a_{n}+b_{n}\right)=\left(2 a_{n-1}+\right.$ $\left.2 b_{n-1}\right)=2\left(a_{n-1}+b_{n-1}\right)$ showing that their sum is also a solution.
3. TRUE False If a_{n} is a solution to a linear homogeneous equation, then $c a_{n}$ is also a solution for any constant c.
4. Solve the recurrence relation $a_{n}=5 a_{n-1}-6 a_{n-2}$ with $a_{1}=5, a_{2}=13$.

Solution: This is a homogeneous equation and so we can solve this using the characteristic equation. The characteristic polynomial is $\lambda^{2}=5 \lambda-6$ or $\lambda^{2}-5 \lambda+6=$ $(\lambda-2)(\lambda-3)=0$. Thus, the general form of the solution has $a_{n}=c_{1} 2^{n}+c_{2} 3^{n}$. Now to solve for these constants, we plug in our initial conditions. We have that $a_{1}=2 c_{1}+3 c_{2}=5$ and $a_{2}=4 c_{1}+9 c_{2}=13$. Solving gives us $c_{1}=c_{2}=1$ so the solution is $a_{n}=2^{n}+3^{n}$.
5. Find a recurrence relation such that $a_{n}=2^{n}-3^{n}$ is a solution to it. (Hint: What would the characteristic polynomial be?)

Solution: Since the bases of the exponentials are 2 and 3 , the characteristic polynomial would be $(\lambda-2)(\lambda-3)=\lambda^{2}-5 \lambda+6$. So, the recurrence relation would be $a_{n}-5 a_{n-1}+6 a_{n-2}=0$ or $a_{n}=5 a_{n-1}-6 a_{n-2}$.
6. Solve the recurrence relation $a_{n}=3 a_{n-1}+4 a_{n-2}$ with $a_{0}=3$ and $a_{1}=2$.

Solution: The characteristic polynomial is $\lambda^{2}-3 \lambda-4=(\lambda-4)(\lambda+1)=0$. Thus the general form is $a_{n}=c_{1} 4^{n}+c_{2}(-1)^{n}$. Plugging in our initial conditions gives $c_{1}+c_{2}=3$ and $4 c_{1}-c_{2}=2$ which gives $c_{1}=1$ and $c_{2}=2$. So the answer is $a_{n}=4^{n}-2 \cdot(-1)^{n}$.
7. Find a recurrence relation such that $a_{n}=n(-1)^{n}$ is a solution to it.

Solution: Since we have $n(-1)^{n}$, we know that there is a double root of $\lambda=-1$ so the characteristic polynomial is $(\lambda+1)^{2}=\lambda^{2}+2 \lambda+1$. So the recurrence relation is $a_{n}+2 a_{n-1}+a_{n-2}=0$ or $a_{n}=-2 a_{n-1}-a_{n-2}$.
8. Solve the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}$ with $a_{0}=3$ and $a_{1}=4$.

Solution: The characteristic polynomial is $\lambda^{2}-4 \lambda+4=(\lambda-2)(\lambda-2)=0$. Thus the general form is $a_{n}=c_{1} 2^{n}+c_{2} n 2^{n}$. Plugging in our initial conditions gives $c_{1}=3$ and $2 c_{1}+2 c_{2}=4$ which gives $c_{1}=3$ and $c_{2}=-1$. So the answer is $a_{n}=3 \cdot 2^{n}-n 2^{n}$.

